Project – Part 2

Provide the college with a print management system for their student pay for print program. There will be an implementation of applications for the purpose of tracking and billing students and guest for printing services at the college. The print system will include several components; software interface for users, integration colleges ID Card Oracle database, Hotspot enterprise for web and mobile printing, ID card scanners, and hosted server infrastructure.

[image:]

SQL Data Definition Language.
· Create a base table. Write the SQL to create a table based on one of your entities. Be sure to identify the primary key as part of your SQL syntax
create table PaymentBatch(

 PaymentBatch int,
 PaymentBatch_code varchar(50),
 Student_id int,
 plan_id int,
 Primary key(PaymentBatch)
);
create table JobsGen(
	
	job_id int,
	service_id int,
	primary key(job_id)

);
· Create a view. Write the SQL to create a view on the base table
Create View ShowJobsEntry(
 Select * from PaymentBatch

· Show the base tables with data. Show a base table along with six rows containing data for three entities in your entity-relationship diagram. (Display each table in the form of an MS Word table.)
Select * from PaymentBatch;
TABLE with 6 rows:::
	PaymentBatch
	PaymentBatch_code
	Student_id
	Plan_id

	11
	0234Er4
	1212
	03

	87
	023TRW3
	1212
	03

	315
	0264tE4
	1212
	03

	341
	02TY563
	1212
	03

	343
	0234tyu
	1212
	03

	765
	0234FKT
	1212
	03

	879
	023HMK5
	1212
	03

SQL Data Manipulation Language (insert, update, and delete).
· Insert a row. Write a SQL query to insert a row into one of your base tables
· Update a row. Write a SQL query to change a data value in the inserted row.
· Delete a row. Write a SQL query to delete the row from your base table
update PaymentBatch set PaymentBatch_code = '0234RT#' where Student_id = '1212';
Delete from PaymentBatch where plan_id = '03'
insert into PaymentBatch values(1343, '0234Er4',1212,03);
insert into PaymentBatch values(1354, '0234tyu',1212,3432);
insert into PaymentBatch values(0315, '0264tE4',1212,3432);
update JobsGen set service_id = '325' where job_id = 1243;
insert into JobsGen values(1243,1343);
update JobsGen set service_id = '324' where job_id = 1245;

Delete from JobsGen where service_id = '03'
insert into JobsGen values(1265,1245)
insert into JobsGen values(1245,1245);

SQL Data Manipulation Language for data retrieval. For 3.1 through 3.7, write the SQL query AND show the output using the data in your base tables.
· Write a SQL query using a comparison operator (e.g., =, >, <)
select * from PaymentBatch where PaymentBatch_code='0234Er4'
	PaymentBatch
	PaymentBatch_code
	Student_id
	Plan_id

	11
	0234Er4
	1212
	03

· Write a SQL query using the “AND” or “OR” operator
select * from PaymentBatch where PaymentBatch_code='0234Er4' and plan_id >= 03
	PaymentBatch
	PaymentBatch_code
	Student_id
	Plan_id

	11
	0234Er4
	1212
	03

· Write a SQL query using the “BETWEEN” or “LIKE” operator
·
· select * from PaymentBatch where PaymentBatch_code Like '023%'
	PaymentBatch
	PaymentBatch_code
	Student_id
	Plan_id

	11
	0234Er4
	1212
	03

	87
	023TRW3
	1212
	03

	315
	0264tE4
	1212
	03

	341
	02TY563
	1212
	03

	343
	0234tyu
	1212
	03

	765
	0234FKT
	1212
	03

	879
	023HMK5
	1212
	03

· Write a SQL query using a built-in function
select MAX(PaymentBatch_code) from PaymentBatch
	(No column name)

	02TY563

· Write a SQL query using the “GROUP BY” clause
select MAX(PaymentBatch_code) from PaymentBatch group by Student_id
	(No column name)

	02TY563

· Write a SQL join query using two or more base tables
select student_Id , Payment_id
from Payment inner join PaymentBatch ON Payment.Payment_id = PaymentBatch.PaymentBatch

	Student_id
	Payment_id

	1212
	1343

	1212
	1354

	1212
	1245

	1212
	1362

· Write a SQL subquery using two or more base tables
select *
from Payment
where Payment_id <= (select max(job_Id) from JobsGen)
	Payment_id
	Payment_code

	1343
	Service1

	1245
	Service3

FIRST NORMAL FORM (1NF)
As per First Normal Form, no two Rows of data must contain repeating group of information i.e each set of column must have a unique value, such that multiple columns cannot be used to fetch the same row. Each table should be organized into rows, and each row should have a primary key that distinguishes it as unique
In this normal form, the database will have 3 tables
1. Students
2. Services
Each of the table will have the following entities
Students

	Students table
	Service table

	Student_id
Student_name
Print_card_no
Print_copies
Payment_id
Payment_amount
	Job_center_id
Job_type
Job_gen
Student_name
Student_id
Student_name
Payment_id
Payment_name

SECOND NORMAL FORM (2 NF)
As per the Second Normal Form there must not be any partial dependency of any column on primary key. It means that for a table that has concatenated primary key, each column in the table that is not part of the primary key must depend upon the entire concatenated key for its existence. If any column depends only on one part of the concatenated key, then the table fails Second normal form.
In this norm form, more table can now be extracted from the two tables to remove the repeating groups.
	student
	services
	payment
	jobs

	Student_id
Student_name
Student_location

	Job_id
Job_name
Job_type
Payment_id

	Payment_id
Payment_amount
Payment_receipt_no

	Job_id
Job_name
Amount
Job_location

THIRD NORMAL FORM (3 NF)
Third Normal form applies that every non-prime attribute of table must be dependent on primary key, or we can say that, there should not be the case that a non-prime attribute is determined by another non-prime attribute. So this transitive functional dependency should be removed from the table and also the table must be in Second Normal form. For example, consider a table with following fields

	Student table
	Service table
	Printcenter table
	Job table
	Payment table
	jobGen table

	Student_id
Student_name
Student_location
	Student_id
Printcenter_id
Job_id
	Printcenter_id
Printcenter_name

	Job_id
Job_name

	Payment_id
Payment_amount
	Job_id
Payment_id

image1.png
Project:Relational Modeling
Dolverables for Part 2:

Entity-Relatonship Diagram

—
o=,
=R
pre
P
fl

2 |
|

o s

ot

